Konishi Anomalies and Curves without Adjoints

نویسنده

  • K. Landsteiner
چکیده

Generalized Konishi anomaly relations in the chiral ring of N=1 supersymmetric gauge theories with unitary gauge group and chiral matter field in two-index tensor representations are derived. Contrary to previous investigations of related models we do not include matter multiplets in the adjoint representation. The corresponding curves turn out to be hyperelliptic. We also point out equivalences to models with orthogonal or symplectic gauge groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjoints and Max Noether’s Fundamentalsatz

We give an exposition of the theory of adjoints and conductors for curves on nonsingular surfaces, emphasizing the case of plane curves, for which the presentation is particularly elementary. This is closely related to Max Noether’s “AF +BG” theorem, which is proved for curves with arbitrary multiple components.

متن کامل

Konishi Anomalies and N = 1 Curves

We present a brief summary of exact results on the non-perturbative effective superpotential of N = 1 supersymmetric gauge theories based on generalized Konishi anomaly equations. In particular we consider theories with classical gauge groups and chiral matter in two-index tensor representations. All these theories can be embedded into theories with unitary gauge group and adjoint matter. This ...

متن کامل

Planar and Nonplanar Konishi Anomalies and Exact Wilsonian Effective Superpotential for Noncommutative N = 1 Supersymmetric U ( 1 )

Abstract The Konishi anomalies for noncommutative N = 1 supersymmetric U(1) gauge theory arising from planar and nonplanar diagrams are calculated. Whereas planar Konishi anomaly is the expected ⋆-deformation of the commutative anomaly, nonplanar anomaly reflects the important features of nonplanar diagrams of noncommutative gauge theories, such as UV/IR mixing and the appearance of nonlocal op...

متن کامل

Motifs et adjoints

We show in many cases the existence of adjoints to extension of scalars on categories of motivic nature, in the framework of field extensions. This is to be contrasted with the more classical situation where one deals with a finite type morphism of schemes. Among various applications, one is a construction of a “TateŠafarevič motive" attached to an abelian variety over a function field. We also...

متن کامل

تغییرات نوری ناهنجار در دوتایی گرفتی آر-زد ذات الکرسی

  UBV ligh curves together with color curves of the semi-detached eclipsing binary RZ Cas are presented. The light curves are analyzed and the spectroscopic elements and the Hipparcos information are used to compute the absolute parameters of the system. The light curve anomalies and occasional flat minima are discussed. Based on the existing evidence, a straightforward explanation for the prim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004